--- title: Vignette of the pengls package author: Stijn Hawinkel output: rmarkdown::html_vignette: toc: true number_sections: true keep_md: true vignette: > %\VignetteIndexEntry{Vignette of the pengls package} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Introduction This vignette demonstrates the use of the _pengls_ package for high-dimensional data with spatial or temporal autocorrelation. It consists of an iterative loop around the _nlme_ \parencite{Pinheiro2021} and _glmnet_ \parencite{Friedman2010} packages. Currently, only continuous outcomes and $R^2$ as performance measure are implemented. \setcounter{tocdepth}{5} \tableofcontents # Installation instuctions The _pengls_ package is available from BioConductor, and can be installed as follows: ```{r install, eval = FALSE} library(BiocManager) install("pengls") ``` Once installed, it can be loaded and version info printed. ```{r loadRCMpackage} suppressPackageStartupMessages(library(pengls)) cat("pengls package version", as.character(packageVersion("pengls")), "\n") ``` # Illustration ## Spatial autocorrelation We first create a toy dataset with spatial coordinates. ```{r spatialToy} library(nlme) n <- 25 #Sample size p <- 50 #Number of features g <- 15 #Size of the grid #Generate grid Grid <- expand.grid("x" = seq_len(g), "y" = seq_len(g)) # Sample points from grid without replacement GridSample <- Grid[sample(nrow(Grid), n, replace = FALSE),] #Generate outcome and regressors b <- matrix(rnorm(p*n), n , p) a <- rnorm(n, mean = b %*% rbinom(p, size = 1, p = 0.25), sd = 0.1) #25% signal #Compile to a matrix df <- data.frame("a" = a, "b" = b, GridSample) ``` The _pengls_ method requires prespecification of a functional form for the autocorrelation. This is done through the _corStruct_ objects defined by the _nlme_ package. We specify a correlation decaying as a Gaussian curve with distance, and with a nugget parameter. The nugget parameter is a proportion that indicates how much of the correlation structure explained by independent errors; the rest is attributed to spatial autocorrelation. The starting values are chosen as reasonable guesses; they will be overwritten in the fitting process. ```{r spatialCorrelation} # Define the correlation structure (see ?nlme::gls), with initial nugget 0.5 and range 5 corStruct <- corGaus(form = ~ x + y, nugget = TRUE, value = c("range" = 5, "nugget" = 0.5)) ``` Finally the model is fitted with a single outcome variable and large number of regressors, with the chosen covariance structure and for a prespecified penalty parameter $\lambda=0.2$. ```{r spatialFit} #Fit the pengls model, for simplicity for a simple lambda penglsFit <- pengls(data = df, outVar = "a", xNames = grep(names(df), pattern = "b", value =TRUE), glsSt = corStruct, lambda = 0.2, verbose = TRUE) ``` Standard extraction functions like print(), coef() and predict() are defined for the new "pengls" object. ```{r standardExtract} penglsFit penglsCoef <- coef(penglsFit) penglsPred <- predict(penglsFit) ``` ## Temporal autocorrelation The method can also account for temporal autocorrelation by defining another correlation structure from the _nlme_ package, e.g. autocorrelation structure of order 1: ```{r timeSetup} n <- 100 #Sample size p <- 10 #Number of features #Generate outcome and regressors b <- matrix(rnorm(p*n), n , p) a <- rnorm(n, mean = b %*% rbinom(p, size = 1, p = 0.25), sd = 0.1) #25% signal #Compile to a matrix dfTime <- data.frame("a" = a, "b" = b, "t" = seq_len(n)) corStructTime <- corAR1(form = ~ t, value = 0.5) ``` The fitting command is similar, this time the $\lambda$ parameter is found through cross-validation of the naive glmnet (for full cross-validation , see below). We choose $\alpha=0.5$ this time, fitting an elastic net model. ```{r timeFit} penglsFitTime <- pengls(data = dfTime, outVar = "a", verbose = TRUE, xNames = grep(names(dfTime), pattern = "b", value =TRUE), glsSt = corStructTime, nfolds = 5, alpha = 0.5) ``` Show the output ```{r} penglsFitTime ``` ## Penalty parameter and cross-validation The _pengls_ package also provides cross-validation for finding the optimal $\lambda$ value. If the tuning parameter $\lambda$ is not supplied, the optimal $\lambda$ according to cross-validation with the naive _glmnet_ function (the one that ignores dependence) is used. Hence we recommend to use the following function to use cross-validation. Multithreading is supported through the _BiocParallel_ package \parencite{Morgan2020}: ```{r registerMulticores} library(BiocParallel) register(MulticoreParam(3)) #Prepare multithereading ``` ```{r, nfolds} nfolds <- 3 #Number of cross-validation folds ``` The function is called similarly to _cv.glmnet_: ```{r cvpengls} penglsFitCV <- cv.pengls(data = df, outVar = "a", xNames = grep(names(df), pattern = "b", value =TRUE), glsSt = corStruct, nfolds = nfolds) ``` Check the result: ```{r printCV} penglsFitCV ``` By default, the 1 standard error is used to determine the optimal value of $\lambda$ \parencite{Friedman2010}: ```{r 1se} penglsFitCV$lambda.1se #Lambda for 1 standard error rule penglsFitCV$cvOpt #Corresponding R2 ``` Extract coefficients and fold IDs. ```{r extractCv} head(coef(penglsFitCV)) penglsFitCV$foldid #The folds used ``` By default, blocked cross-validation is used, but random cross-validation is also available (but not recommended for timecourse or spatial data). First we illustrate the different ways graphically, again using the timecourse example: ```{r illustrFolds, fig.width = 8, fig.height = 7} set.seed(5657) randomFolds <- makeFolds(nfolds = nfolds, dfTime, "random", "t") blockedFolds <- makeFolds(nfolds = nfolds, dfTime, "blocked", "t") plot(dfTime$t, randomFolds, xlab ="Time", ylab ="Fold") points(dfTime$t, blockedFolds, col = "red") legend("topleft", legend = c("random", "blocked"), pch = 1, col = c("black", "red")) ``` To perform random cross-validation ```{r cvpenglsTimeCourse} penglsFitCVtime <- cv.pengls(data = dfTime, outVar = "a", xNames = grep(names(dfTime), pattern = "b", value =TRUE), glsSt = corStructTime, nfolds = nfolds, cvType = "random") ``` To negate baseline differences at different timepoints, it may be useful to center or scale the outcomes in the cross validation. For instance for centering only: ```{r timeCourseScale} penglsFitCVtimeCenter <- cv.pengls(data = dfTime, outVar = "a", xNames = grep(names(dfTime), pattern = "b", value =TRUE), glsSt = corStructTime, nfolds = nfolds, cvType = "blocked", transFun = function(x) x-mean(x)) penglsFitCVtimeCenter$cvOpt #Better performance ``` # Session info ```{r sessionInfo} sessionInfo() ``` \clearpage \printbibliography