scClassifR is an R package for cell type prediction on single cell RNA-sequencing data. Currently, this package supports data in the forms of a Seurat object or a SingleCellExperiment object.
More information about Seurat object can be found here: https://satijalab.org/seurat/ More information about SingleCellExperiment object can be found here: https://osca.bioconductor.org/
scClassifR provides 2 main features:
The scClassifR
package can be directly installed from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!require(scClassifR))
BiocManager::install("scClassifR")
For more information, see https://bioconductor.org/install/.
The scClassifR
package comes with several pre-trained models to classify cell types.
# load scClassifR into working space
library(scClassifR)
#> Loading required package: Seurat
#> Attaching SeuratObject
#> Loading required package: SingleCellExperiment
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: 'MatrixGenerics'
#> The following objects are masked from 'package:matrixStats':
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#> Loading required package: parallel
#>
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:parallel':
#>
#> clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
#> clusterExport, clusterMap, parApply, parCapply, parLapply,
#> parLapplyLB, parRapply, parSapply, parSapplyLB
#> The following objects are masked from 'package:stats':
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
#> tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#>
#> Attaching package: 'S4Vectors'
#> The following objects are masked from 'package:base':
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: 'Biobase'
#> The following object is masked from 'package:MatrixGenerics':
#>
#> rowMedians
#> The following objects are masked from 'package:matrixStats':
#>
#> anyMissing, rowMedians
#>
#> Attaching package: 'SummarizedExperiment'
#> The following object is masked from 'package:SeuratObject':
#>
#> Assays
#> The following object is masked from 'package:Seurat':
#>
#> Assays
The models are stored in the default_models
object:
data("default_models")
names(default_models)
#> [1] "B cells" "NK" "Plasma cells" "T cells" "CD4 T cells"
#> [6] "CD8 T cells" "Monocytes" "DC" "alpha" "beta"
#> [11] "delta" "gamma" "ductal" "acinar"
The default_models
object is named a list of classifiers. Each classifier is an instance of the scClassifR S4 class
. For example:
default_models[['B cells']]
#> An object of class scClassifR for B cells
#> * 31 features applied: CD19, MS4A1, SDC1, CD79A, CD79B, CD38, CD37, CD83, CR2, MVK, MME, IL2RA, PTEN, POU2AF1, MEF2C, IRF8, TCF3, BACH2, MZB1, VPREB3, RASGRP2, CD86, CD84, LY86, CD74, SP140, BLK, FLI1, CD14, DERL3, LRMP
#> * Predicting probability threshold: 0.5
#> * No parent model
To identify cell types available in a dataset, we need to load the dataset as Seurat or SingleCellExperiment object.
For this vignette, we use a small sample datasets that is available as a Seurat
object as part of the package.
# load the example dataset
data("tirosh_mel80_example")
tirosh_mel80_example
#> An object of class Seurat
#> 78 features across 480 samples within 1 assay
#> Active assay: RNA (78 features, 34 variable features)
#> 1 dimensional reduction calculated: umap
The example dataset already contains the clustering results as part of the metadata. This is not necessary for the classification process.
head(tirosh_mel80_example[[]])
#> orig.ident nCount_RNA nFeature_RNA percent.mt
#> Cy80_II_CD45_B07_S883_comb SeuratProject 42.46011 8 0
#> Cy80_II_CD45_C09_S897_comb SeuratProject 74.35907 14 0
#> Cy80_II_CD45_H07_S955_comb SeuratProject 42.45392 8 0
#> Cy80_II_CD45_H09_S957_comb SeuratProject 63.47043 12 0
#> Cy80_II_CD45_B11_S887_comb SeuratProject 47.26798 9 0
#> Cy80_II_CD45_D11_S911_comb SeuratProject 69.12167 13 0
#> RNA_snn_res.0.8 seurat_clusters RNA_snn_res.0.5
#> Cy80_II_CD45_B07_S883_comb 4 4 2
#> Cy80_II_CD45_C09_S897_comb 4 4 2
#> Cy80_II_CD45_H07_S955_comb 4 4 2
#> Cy80_II_CD45_H09_S957_comb 4 4 2
#> Cy80_II_CD45_B11_S887_comb 4 4 2
#> Cy80_II_CD45_D11_S911_comb 1 1 1
To launch cell type identification, we simply call the classify_cells
function. A detailed description of all parameters can be found through the function’s help page ?classify_cells
.
seurat.obj <- classify_cells(classify_obj = tirosh_mel80_example,
cell_types = 'all', path_to_models = 'default')
cell_types = c('B cells', 'T cells')
classifiers = c(default_models[['B cells']], default_models[['T cells']])
The classify_cells
function returns the input object but with additional columns in the metadata table.
# display the additional metadata fields
seurat.obj[[]][c(20:30), c(8:21)]
#> B_cells_p B_cells_class NK_p NK_class
#> Cy80_II_CD45_D04_S904_comb 0.007983681 no 0.3836233 no
#> Cy80_II_CD45_C12_S900_comb 0.007668953 no 0.5054545 yes
#> Cy80_II_CD45_C02_S890_comb 0.026575995 no 0.3231831 no
#> Cy80_II_CD45_F01_S925_comb 0.029493459 no 0.3658388 no
#> Cy80_II_CD45_G10_S946_comb 0.024490415 no 0.3791378 no
#> Cy80_II_CD45_F08_S932_comb 0.010955256 no 0.4696540 no
#> Cy80_II_CD45_E01_S913_comb 0.008845469 no 0.3526443 no
#> Cy80_II_CD45_H11_S959_comb 0.009423056 no 0.4397574 no
#> Cy80_II_CD45_A01_S865_comb 0.045843008 no 0.3768446 no
#> Cy80_II_CD45_E11_S923_comb 0.014868335 no 0.3850901 no
#> Cy80_II_CD45_E08_S920_comb 0.012824167 no 0.3892861 no
#> Plasma_cells_p Plasma_cells_class T_cells_p
#> Cy80_II_CD45_D04_S904_comb NA <NA> 0.10912289
#> Cy80_II_CD45_C12_S900_comb NA <NA> 0.10356344
#> Cy80_II_CD45_C02_S890_comb NA <NA> 0.09935477
#> Cy80_II_CD45_F01_S925_comb NA <NA> 0.52573389
#> Cy80_II_CD45_G10_S946_comb NA <NA> 0.19678523
#> Cy80_II_CD45_F08_S932_comb NA <NA> 0.10993410
#> Cy80_II_CD45_E01_S913_comb NA <NA> 0.07988881
#> Cy80_II_CD45_H11_S959_comb NA <NA> 0.11294201
#> Cy80_II_CD45_A01_S865_comb NA <NA> 0.01969278
#> Cy80_II_CD45_E11_S923_comb NA <NA> 0.11678435
#> Cy80_II_CD45_E08_S920_comb NA <NA> 0.24587206
#> T_cells_class CD4_T_cells_p CD4_T_cells_class
#> Cy80_II_CD45_D04_S904_comb no NA <NA>
#> Cy80_II_CD45_C12_S900_comb no NA <NA>
#> Cy80_II_CD45_C02_S890_comb no NA <NA>
#> Cy80_II_CD45_F01_S925_comb yes 0.4909765 no
#> Cy80_II_CD45_G10_S946_comb no NA <NA>
#> Cy80_II_CD45_F08_S932_comb no NA <NA>
#> Cy80_II_CD45_E01_S913_comb no NA <NA>
#> Cy80_II_CD45_H11_S959_comb no NA <NA>
#> Cy80_II_CD45_A01_S865_comb no NA <NA>
#> Cy80_II_CD45_E11_S923_comb no NA <NA>
#> Cy80_II_CD45_E08_S920_comb no NA <NA>
#> CD8_T_cells_p CD8_T_cells_class Monocytes_p
#> Cy80_II_CD45_D04_S904_comb NA <NA> 0.215263
#> Cy80_II_CD45_C12_S900_comb NA <NA> 0.215263
#> Cy80_II_CD45_C02_S890_comb NA <NA> 0.215263
#> Cy80_II_CD45_F01_S925_comb 0.3240697 no 0.215263
#> Cy80_II_CD45_G10_S946_comb NA <NA> 0.215263
#> Cy80_II_CD45_F08_S932_comb NA <NA> 0.215263
#> Cy80_II_CD45_E01_S913_comb NA <NA> 0.215263
#> Cy80_II_CD45_H11_S959_comb NA <NA> 0.215263
#> Cy80_II_CD45_A01_S865_comb NA <NA> 0.215263
#> Cy80_II_CD45_E11_S923_comb NA <NA> 0.215263
#> Cy80_II_CD45_E08_S920_comb NA <NA> 0.215263
#> Monocytes_class
#> Cy80_II_CD45_D04_S904_comb no
#> Cy80_II_CD45_C12_S900_comb no
#> Cy80_II_CD45_C02_S890_comb no
#> Cy80_II_CD45_F01_S925_comb no
#> Cy80_II_CD45_G10_S946_comb no
#> Cy80_II_CD45_F08_S932_comb no
#> Cy80_II_CD45_E01_S913_comb no
#> Cy80_II_CD45_H11_S959_comb no
#> Cy80_II_CD45_A01_S865_comb no
#> Cy80_II_CD45_E11_S923_comb no
#> Cy80_II_CD45_E08_S920_comb no
New columns are:
predicted_cell_type: The predicted cell type, also containing any ambiguous assignments. In these cases, the possible cell types are separated by a “/”
most_probable_cell_type: Present only if simplified_result
was set to TRUE
. Contains the most probably cell type ignoring any ambiguous assignments.
columns with syntax [celltype]_p
: probability of a cell to belong to a cell type. Unknown cell types are marked as NAs.
The predicted cell types can now simply be visualized using the matching plotting functions. In this example, we use Seurat’s DimPlot
function:
With the current number of cell classifiers, we identify cells belonging to 2 cell types (B cells and T cells) and to 2 subtypes of T cells (CD4+ T cells and CD8+ T cells). The other cells (red points) are not among the cell types that can be classified by the predefined classifiers. Hence, they have an empty label.
For a certain cell type, users can also view the prediction probability. Here we show an example of B cell prediction probability:
Cells predicted to be B cells with higher probability have darker color, while the lighter color shows lower or even zero probability of a cell to be B cells. For B cell classifier, the threshold for prediction probability is currently at 0.5, which means cells having prediction probability at 0.5 or above will be predicted as B cells.
The automatic cell identification by scClassifR matches the traditional cell assignment, ie. the approach based on cell canonical marker expression. Taking a simple example, we use CD19 and CD20 (MS4A1) to identify B cells:
We see that the marker expression of B cells exactly overlaps the B cell prediction made by scClassifR.
sessionInfo()
#> R version 4.1.0 (2021-05-18)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] parallel stats4 stats graphics grDevices utils datasets
#> [8] methods base
#>
#> other attached packages:
#> [1] scClassifR_1.0.0 SingleCellExperiment_1.14.0
#> [3] SummarizedExperiment_1.22.0 Biobase_2.52.0
#> [5] GenomicRanges_1.44.0 GenomeInfoDb_1.28.0
#> [7] IRanges_2.26.0 S4Vectors_0.30.0
#> [9] BiocGenerics_0.38.0 MatrixGenerics_1.4.0
#> [11] matrixStats_0.58.0 SeuratObject_4.0.1
#> [13] Seurat_4.0.1
#>
#> loaded via a namespace (and not attached):
#> [1] plyr_1.8.6 igraph_1.2.6 lazyeval_0.2.2
#> [4] splines_4.1.0 listenv_0.8.0 scattermore_0.7
#> [7] ggplot2_3.3.3 digest_0.6.27 foreach_1.5.1
#> [10] htmltools_0.5.1.1 fansi_0.4.2 magrittr_2.0.1
#> [13] tensor_1.5 cluster_2.1.2 ROCR_1.0-11
#> [16] recipes_0.1.16 globals_0.14.0 gower_0.2.2
#> [19] spatstat.sparse_2.0-0 colorspace_2.0-1 ggrepel_0.9.1
#> [22] xfun_0.23 dplyr_1.0.6 crayon_1.4.1
#> [25] RCurl_1.98-1.3 jsonlite_1.7.2 spatstat.data_2.1-0
#> [28] survival_3.2-11 zoo_1.8-9 iterators_1.0.13
#> [31] ape_5.5 glue_1.4.2 polyclip_1.10-0
#> [34] gtable_0.3.0 ipred_0.9-11 zlibbioc_1.38.0
#> [37] XVector_0.32.0 leiden_0.3.7 DelayedArray_0.18.0
#> [40] kernlab_0.9-29 future.apply_1.7.0 abind_1.4-5
#> [43] scales_1.1.1 data.tree_1.0.0 DBI_1.1.1
#> [46] miniUI_0.1.1.1 Rcpp_1.0.6 viridisLite_0.4.0
#> [49] xtable_1.8-4 reticulate_1.20 spatstat.core_2.1-2
#> [52] proxy_0.4-25 lava_1.6.9 prodlim_2019.11.13
#> [55] htmlwidgets_1.5.3 httr_1.4.2 RColorBrewer_1.1-2
#> [58] ellipsis_0.3.2 ica_1.0-2 farver_2.1.0
#> [61] pkgconfig_2.0.3 nnet_7.3-16 sass_0.4.0
#> [64] uwot_0.1.10 deldir_0.2-10 utf8_1.2.1
#> [67] caret_6.0-88 labeling_0.4.2 tidyselect_1.1.1
#> [70] rlang_0.4.11 reshape2_1.4.4 later_1.2.0
#> [73] munsell_0.5.0 tools_4.1.0 generics_0.1.0
#> [76] ggridges_0.5.3 evaluate_0.14 stringr_1.4.0
#> [79] fastmap_1.1.0 yaml_2.2.1 goftest_1.2-2
#> [82] ModelMetrics_1.2.2.2 knitr_1.33 fitdistrplus_1.1-3
#> [85] purrr_0.3.4 RANN_2.6.1 pbapply_1.4-3
#> [88] future_1.21.0 nlme_3.1-152 mime_0.10
#> [91] compiler_4.1.0 plotly_4.9.3 png_0.1-7
#> [94] e1071_1.7-6 spatstat.utils_2.1-0 tibble_3.1.2
#> [97] bslib_0.2.5.1 stringi_1.6.2 highr_0.9
#> [100] lattice_0.20-44 Matrix_1.3-3 vctrs_0.3.8
#> [103] pillar_1.6.1 lifecycle_1.0.0 spatstat.geom_2.1-0
#> [106] lmtest_0.9-38 jquerylib_0.1.4 RcppAnnoy_0.0.18
#> [109] data.table_1.14.0 cowplot_1.1.1 bitops_1.0-7
#> [112] irlba_2.3.3 httpuv_1.6.1 patchwork_1.1.1
#> [115] R6_2.5.0 promises_1.2.0.1 KernSmooth_2.23-20
#> [118] gridExtra_2.3 parallelly_1.25.0 codetools_0.2-18
#> [121] MASS_7.3-54 assertthat_0.2.1 withr_2.4.2
#> [124] sctransform_0.3.2 GenomeInfoDbData_1.2.6 mgcv_1.8-35
#> [127] grid_4.1.0 rpart_4.1-15 timeDate_3043.102
#> [130] tidyr_1.1.3 class_7.3-19 rmarkdown_2.8
#> [133] Rtsne_0.15 pROC_1.17.0.1 lubridate_1.7.10
#> [136] shiny_1.6.0